pC (CNI) polarimeters

W. Schmidke, on behalf of the polarimetry group RSC mtg. 13.01.12

- CNI & p-Carbon polarimeters: brief overview
- pC systematic uncertainties:
 - A_N energy dependence
 - energy loss in targets, target instability
- Steps to address in Run12:
 - target selection, construction
 - monitor w/ long. seg. detectors
- Run12 pC overview
- Special runs for polarimetry studies
- Advertisement: Run11 results

RHIC CNI polarimeters

"CNI" polarimetry

Left-right asymmetry in elastic scattering: Interference between electromagnetic and hadronic amplitudes in the Coulomb-Nuclear Interference (CNI) region

- Fast feedback for polarized beam setup, tune and development
- Precise beam polarization measurements for RHIC, experiments

p-Carbon polarimeter

Target Scan mode (~30 sec/measurement)

- Rate 10's MHz ⇒ rel. stat. uncert. 2-3%
- 4-5 measurements per fill:
 injection, ramp before/after rotators,
 @ store every 2-3 hours
- Vertical & horizontal profiles each beam

2 polarim. / RHIC ring:

TOF select scattered ¹²C 0.4<E_c<0.9 MeV

pC polarization: A_N^{pC}

 An average (assumed constant) analyzing power determined per fill from H-jet polarizations: (H-jet stat. limited)

$$A_N^{pC} = \frac{\epsilon^{pC}}{P_{H-jet}}$$

Then used for finer grained (e.g. several per fill)
 pC polarizations

pC polarizations:
$$P_{pC} = A_N^{pC} \cdot \epsilon^{pC}$$

- L/R asymmetry e^{pC} measured with "square root" or "cross ratio" formula; cancellations: acceptances, luminosities, many systematics
- Main contributions to pC P systematics: measurement-to-measurement variations of actual A_N pC away from assumed constant

$A_N^{pC} \leftrightarrow \text{energy scale}$

- Analyzing power A_N(T) very steep dependence on ¹²C kinetic energy T:
- Measure in 0.4<T<0.9 MeV;
 effective A_N from pC/H-jet ratio
- Sensitive to ¹²C energy scale: e.g. $\Delta T = 25 \text{ keV} \Rightarrow \delta A_{N} = 5\%$ relative
- Energy scale of scattered ¹²C major source of A_N, P uncertainty

- 1st point: the energy scale uncertainty of the Si detectors introduces uncertainty on A_N, P
- e.g. estimated dead layer in Si ~60 μg/cm²
 - 12C in T range lose ~200 keV in dead layer
 - uncertainty of ~10% on dead layer ⇒ 5% uncertainty on A_N

Ribbon target geometry

- Top view of vertical ribbon target, width w≈7µ, thickness t≈25nm (~110 C atoms):
- Angle θ flat w-side w.r.t. detector
- Entire ribbon (w,t) is bathed in beam (beam $\sigma_{yy} = 0.5-1$ mm)
- Target may be twisted: length scale of twists ≈ 150 μ a few twists across beam
- Beam-eye view of target on frame:
- Target may be loose, up to 2-3 mm play

As target sways in the \vec{p} breeze, may:

- Rotate about vertical axis, changing θ
 & path length L through target en route to detector: L∞t/sin(θ)
- May move along beam direction, changing range of scattering angles covered by detector

ribbon length ~2.5 cm

scat. C to detector

W

p-beam

¹²C energy loss in target

- Scattered ¹²C nuclei lose energy in ¹²C target en route to Si detectors
- $_{\!\!\!\text{\tiny meas}}$ Measured T $_{\!\!\!\!\text{\tiny meas}}$ down-shifted from scattered T $_{\!\!\!\!\text{\tiny sc}}$
- We measure over a fixed T_{meas} range
- If θ changes path length changes
 given T_{meas} corresponds to different T_{scat}, A_N
- L = $t/(2 \cdot \sin \theta)$ ⇒ steep change A_N as $\rightarrow 0^\circ$
- Put in #'s for C-C dE/dz, A_N(T):

Loose targets ⇒ unstable orientation ⇒ unstable effective A_N

scat. C to det.

p-beam

Data: A_N^{pC} per pC target

- Run11 had nominal 25 nm thick targets, & a few 2×,4× thick.
- A_N <u>each target</u> determined from pC/H-jet normalization
- Relative to fixed A_{N0}
 (error bars statistical):
- Blue lines are mean
 A_N each polar.

Clear trend:

- Thick targets lower A_N
- Consistent with more E-loss in target, lower A_N
- 1x→4x consistent with expectation from E-loss

Run12: target strategy

- Energy loss in targets, instabilities ⇒ significant variations of A_N pC
- Strategy: minimize energy loss, use thinnest possible targets:
 - ⇒ all targets 25 nm thick
- Rotation / twisting of targets varies E-loss en route to detectors
- Usual targets are slightly twisted:
- Highly twisted targets were produced:

- Many twists across beam, orientation effects average out
 - ⇒ several highly twisted targets installed

¹²C multiple scattering in target

- The recoil ¹²C also undergo multiple Coulomb scattering, RMS angle θ_{RMS} ∝ √L/T (L=path length, T=kinetic E)
- Distributions (nearly) azimuthally uniform, but for Z (along beam) distributions:
- No mult. scat. ~all perpendicular to beam
- More material \Rightarrow more events larger θ , Z: shown here $(0,1,4,9) \times 25$ nm:

Also:

- Lower energy ⇒ larger mult. scat. angles
- Mean energy drops at larger θ , Z:

 Widths of #event, T distributions increase with amount of target material crossed

Z = direction along beam

Longitudinal det. segment.

- Previously: all RHIC pC detectors segmented azimuthally
- AGS pC polar. has some longitudinally (Z) segmented detectors:

- Peak of distributions ~ Z of target w.r.t. detector
- Widths of these distributions ~ path length in target material (compare plots previous slide)

Run 12: long. det. segmentation

- To gain info on target material traversed en route to detectors:
 - ⇒ one pair detectors rotated for longitudinal segmentation

e.g. width of event distribution relates to material:

Perhaps can e.g. relate A_N pC to RMS...

Improvements Run12

- Those were main points to address systematics, instabilities of P meas.
- Here list all features / improvements for Run12:

Targets (thin ¹²C ribbons):

- √ Varying E-loss of scattered ¹²C in target ⇒ instability P measurement targets not rigid, twisting varies path length in target, E-loss
- Test: highly twisted targets, average effects of twisting
- Test: shorter targets, may allow increase 6→8 targets / ladder (lifetime)
 also: shorter target more stable, less flexing

Detectors (Si strips):

- Continue tests of commercially available Hamamatsu;
 migrate towards in future runs
- One pair detectors longitudinal segmentation:
 - width of event distribution ~ target material traversed by scattered ¹²C (multiple scattering)
 - monitor, compare expected E-loss effects on P measurement

Improvements Run12

<u>DAQ</u> (2 independent systems):

- Run11 numerous glitches switching RHIC clocks within system
- Reconfigured so each ½ has Blu or Yel polarimeters, 1 clock each DAQ

$\underline{\alpha}$ -sources (calibration):

- Previously only ²⁴¹Am sources, 1 E-point, rough calibration
- Added some ¹⁴⁸Gd sources, 2 E-points: calibration & Si dead layer
- Status:
- Detectors, targets installed ~end November, under vacuum since
- Reconfigured DAQ tested, mostly debugged, continuing
- ullet Tests with lpha-sources starting, preliminary results OK
- System overview next slide \(\square\)
- Blu2(dn) most "experimental" polarimeter

Run12 RHIC pC polarimeters

DAQ, detectors, targets, sources

Special runs (H-jet also)

- Backgrounds in H-jet measurement not understood, need more info to estimate, gauge related uncertainties
- 1- vs. 2-beam background has puzzling aspects
- Can run with one beam separated from jet target, get 1-beam data
- Can be done in normal running, will definitely do
- A_N^{pC} varies with beam energy
- This year will have much data 100, 250 GeV beams with same polarimeter configuration, reduced syst. in comparing
- Maybe also want H-jet running long 24 GeV fills? (Done hurriedly end Run11, inconclusive results)
 Critical to compare P at injection, store
- Alternatively: Ramp up/down studies? (also done end Run11)
- Also requires dedicated running time...

Run11 results?

So much for the future, what about the past?

- Run11 polarization results near ready for distribution
- Will provide:
 - mean P for each store
 - mean P for each measurement, 3-4 per store for experiments that turned on late
 - corrections mean P → P for colliding experiments (polarization profile, not discussed here)
- Systematics uncertainties mostly evaluated, final steps under way results appear promisingly good

Run11 results & systematic studies will presented soon...